Слияние двух звезд. Ученые впервые поймали волны от слияния нейтронных звезд

Сегодня на нескольких одновременных пресс-конференциях ученые из гравитационных обсерваторий LIGO и Virgo, а также из других научных учреждений мира сообщили, что в августе этого года им впервые удалось зарегистрировать гравитационные волны, порожденные слиянием двух нейтронных звезд. Ранее гравитационные волны отмечались физиками четырежды, но во всех случаях они были порождены слиянием двух черных дыр, а не нейтронных звезд.


© ESO/L. Calçada/M. Kornmesser

Более того, также впервые в истории событие, вызвавшее гравитационные волны, было отмечено не только гравитационными детекторами-интерферометрами, но и наблюдалось космическими и наземными телескопами в различных диапазонах (рентгеновском, ультрафиолетовом, видимом, инфракрасном и радиодиапазоне). Открытие не только позволит совершить следующий шаг в исследовании гравитационных волн и гравитации, но также даст значительный прогресс для изучения нейтронных звезд. В частности оно подтверждает гипотезу синтезе тяжелых элементов в процессе слияния нейтронных звезд и о природе гамма-всплесков. Открытие описывается в целом ряде статье, публикуемых в журнала Nature, Nature Astronomy, Physical Review Letters и Astrophysical Journal Letters.

Гравитационные волны порождает любой объект, обладающий массой и движущийся с неравномерным ускорением, но достаточно сильные волны, которые можно обнаружить при помощи устройств, сделанных человеком, рождаются в ходе взаимодействия объектов очень большой массы: черных дыр, компонентов двойных звезд, нейтронных звезд. Нынешняя волна, получившая обозначение GW170817, была зарегистрирована обоими детекторами гравитационной обсерватории LIGO в США и детектором Virgo в Италии 17 августа этого года.

Наличие трех детекторов, расположенных в разных точках Земли, позволяет ученым приблизительно определить положение источника волн. Спустя две секунды после того, как гравитационные обсерватории зафиксировали волну GW170817, в том районе, где должен располагаться ее источник была отмечена гамма-вспышка. Это сделали космические гамма-телескопы Fermi (Fermi Гамма-ray Space Telescope) и INTEGRAL (INTErnational Гамма Ray Astrophysics Laboratory),. После этого многие наземные и космические обсерватории начали искать возможный источник этих событий. Площадь района поиска, определенная по данным гравитационных обсерватории и гамма-телескопов была довольно велика, составляя около 35 квадратных градусов, на таком участке неба уместилось бы несколько сотен полных лунных дисков, а число звезд, расположенных на нем, составляет несколько миллионов. Но найти источник гравитационной волны и гамма-всплеска все-таки удалось.

Первым это сделал через одиннадцать часов после гамма-всплеска телескоп-рефлектор Swope, работающий в обсерватории Лас-Кампанас в Чили. После этого сразу несколько крупных телескопов прервали утвержденные ранее программы своих наблюдений и переключились на наблюдение небольшой галактики NGC 4993 в созвездии Гидры, на расстоянии 40 парсек от Солнечной системы (около 130 миллионов световых лет). Это событие вызвало первые слухи об открытии, но официально ученые ничего не подтверждали вплоть до сегодняшних пресс-конференций.

Действительно, источником волн и гамма-излучения стала звезда, расположенная рядом с галактикой NGC 4993. За этой звездой в течение нескольких недель следили телескопы Pan-STARRS и Subaru на Гавайских островах, Очень Большой Телескоп Европйеской Южной обсерватории (VLT ESO), Телескоп Новой Технологии (NTT), VLT Survey Telescope (VST), 2,2-метровый телескоп MPG/ESO , решетка телескопов ALMA (Atacama Large Millimeter/submillimeter Array) – всего в наблюдениях участвовали около семидесяти обсерваторий со всего мира, а также космический телескоп Хаббла. «Редко случается, чтобы ученому выпадало быть свидетелем начала новой эры в науке, – приводит пресс-релиз ESO слова астронома Елена Пиан (Elena Pian) из Астрофизического института Италии INAF. – Это – один из таких случаев!». Времени у астрономов было немного, так как галактика NGC 4993 была доступна для наблюдений только в вечернее время в августе, в сентябре она оказалась на небе слишком близко к Солнцу и стала ненаблюдаемой.

Наблюдавшаяся звезда первоначально была очень яркой, но за первые пять дней наблюдений ее яркость снизилась в двадцать раз. Расположена эта звезда на том же расстоянии от нас, что и галактика NGC 4993 – 130 миллионов световых лет. Это означает, что гравитационная волна GW170817 возникла на рекордно близком к нам расстоянии. Расчеты показали, что источником гравитационной волны стало слияние объектов, массы которых равны от 1,1 до 1,6 масс Солнца, а значит, это не могли быть черные дыры. Так нейтронные звезды стали единственным возможным объяснением.


Составное изображение NGC 4993
и килоновой по данным многих инструментов ESO
© ESO

Порождение гравитационных волн нейтронными звездами происходит по тому же сценарию, что и при слиянии черных дыр, только порождаемые нейтронными звездами волны слабее. Вращаясь вокруг общего центра тяжести в двойной системе, две нейтронные звезды теряют энергию, излучая гравитационные волны. Поэтому они постепенно сближаются, пока не сольются в одну нейтронную звезду (есть вероятность, что при слиянии может возникнуть и черная дыра). Слияние двух нейтронных звезд сопровождается вспышкой значительно большей яркости, чем обычная новая звезда. Астрономы предлагают для нее название «килоновая» . Часть массы двух звезд при слиянии преобразуется в энергию гравитационных волн, которые и были в этот раз замечены земными учеными.

Хотя килоновые звезды были предсказаны более 30 лет назад, нынешний случай – первое обнаружение подобной звезды. Ее характеристики, определенные в результате наблюдений, хорошо соответствуют сделанным ранее предсказаниям. В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к красному. «Когда на наших мониторах появился спектр объекта, я понял, что это самое необычное транзиентное явление, которое я когда-либо видел, – говорит Стивен Смартт (Stephen Smartt), выполнявший наблюдения на телескопе ESO NTT. – Я никогда не наблюдал ничего подобного. Наши данные, так же, как и данные других исследовательских групп, ясно показывают, что это была не сверхновая и не переменная звезда фона, а что-то совершенно необычное».

Спектры излучения звезды показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд. Это наблюдение подтвердила сформулированную ранее астрофизиками теорию r-нуклеосинтеза (r-процесс, быстрый процесс захвата нейтронов) в недрах сверхплотных звездных объектов. Химические элементы, образовавшиеся при слиянии нейтронных звезд, после взрыва килоновой рассеялись в космосе.

Подтвердилась и еще одна теория астрономов, согласно которой короткие гамма-всплески возникают при слиянии нейтронных звезд. Эта мысль высказывалась давно, но только объединение данных от гравитационных обсерваторий LIGO и Virgo с наблюдениями астрономов позволило окончательно убедиться в ее правильности.

«Пока что данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO–VIRGO, и замечательное достижение ESO, которой удалось получить такие наблюдения килоновой», – рассказывает астроном Стефано Ковино (Stefano Covino).

Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Иллюстрация столкновения нейтронных звезд. Узкий выброс по диагонали - поток гамма-лучей. Светящееся облако вокруг звезд - источник видимого света, который наблюдали телескопы после слияния. Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet

Совместное наблюдение гамма-всплеска, гравитационных волн и видимого света позволили определить не только область на небе, где произошло событие, но и галактику NGC 4993, к которой звезды принадлежали.


Определение расположения на небе разными детекторами

Что мы можем сказать о нейтронных звездах?

Астрономы наблюдали короткие всплески гамма-излучения на протяжении многих десятилетий, но не знали точно, как они возникают. Основным предположением было, что этот всплеск происходит в результате слияния нейтронных звезд, и теперь наблюдение гравитационных волн от этого события подтвердило теорию.

Когда нейтронные звезды сталкиваются, основная часть их вещества сливается в один сверхмассивных объект, излучая “огненный шар” из гамма излучения (тот самые короткий гамма-всплеск, зарегистрированный через две секунды после гравитационных волн). После этого возникает так называемая килонова , когда вещество, оставшееся после столкновения нейтронных звезд уносится от места столкновения, излучая свет. Наблюдение за спектром этого излучения позволило определить, что тяжелые элементы, такие как золото, рождаются именно в результате килоновых. Ученые наблюдали после-свечение на протяжении недель после события, собирая данные о процессах, происходивших в звездах, и это явилось первым достоверным наблюдением килоновой.

Нейтронные звезды - это сверхплотные объекты, образующиеся после взрыва сверхновой. Давление в звезде столь высоко, что отдельны атомы не могут существовать, и внутри звезды находится жидкий «суп» из нейтронов, протонов и других частиц. Чтобы описать нейтронную звезду, ученые используют уравнение состояния, связывающее давление и плотность вещества. Существует множество вариантов возможных уравнений состояний, но ученые не знают, какие из них правильные, поэтому гравитационные наблюдения могут помочь разрешить этот вопрос. На данный момент наблюденный сигнал не дает однозначного ответа, но помогают дать интересные оценки на форму звезды (которая зависит от гравитационного притяжения ко второй звезде).

Интересным открытием оказалось, что наблюдавшийся короткий гамма-всплеск является самым близким к Земле, но в то же время слишком тусклым для такого расстояния. Ученые предположили несколько возможных объяснений: возможно, луч гамма-излучения был неравномерной яркости, или мы увидели только самый его край. В любом случае возникает вопрос: ранее астрономы не предполагали, что такие тусклые всплески могут быть расположены так близко, и могли ли они тогда пропустить такие же тусклые всплески, или же неправильно интерпретировать их как более далекие? Совместные наблюдения в гравитационном и электромагнитном диапазоне могут помочь дать ответ, но на данном уровне чувствительности детекторов такие наблюдения будут достаточно редкими - в среднем 0.1-1.4 в год.

Кроме гравитационного и электромагнитного излучения, нейтронные звезды излучают потоки нейтрино в процессе слияния. Детекторы нейтрино также работали над поиском этих потоков от события, но не зафиксировали ничего. В целом, этот результат был ожидаем - как и в случае гамма-всплеска, событие слишком тусклое (или мы наблюдаем его под большим углом), чтобы детекторы могли его увидеть.

Скорость гравитационных волн

Так как гравитационные волны и световой сигнал произошли от одного источника с очень большой вероятностью (5.3 sigma), и первый световой сигнал пришел через 1.7 секунд после гравитационного, мы можем ограничить скорость распространения гравитационных волн с очень большой точностью. Предполагая, что свет и гравитационные волны излучались одновременно, а задержка между сигналами произошла из-за того, что гравитация быстрее, можно получить верхнюю оценку. Нижнюю оценку можно получить из моделей слияния нейтронных звезд: предположить, что свет был испущен через 10 секунд после гравитационных волн (в этот момент уже все процессы точно должны были завершиться) и нагнал гравитационные волны к моменту достижения Земли. Как результат, скорость гравитации равна скорости света с огромной точностью

Для нижней оценки можно использовать и большую задержку между излучением, и даже предположить, что сначала был испущен световой сигнал, что понизит точность пропорционально. Но даже в этом случае оценка получается чрезвычайно точной.

Используя те же знания о задержке между сигналами можно значительно повысить точность оценок на лоренц-инвариантность (разности между поведением гравитации и света при преобразовании Лоренца) и принцип эквивалентности .

Ученые измерили постоянную Хаббла и другим образом - по наблюдению параметров реликтового излучения на телескопе Планк , и получили другое значение постоянной Хаббла, не согласующееся с измерениями SHoES. Это различие слишком велико, чтобы быть статистическим, но пока не известны причины расхождений оценок. Поэтому необходимо независимое измерение.


Распределение вероятности для постоянной Хаббла с использованием гравитационных волн (синий). Пунктиром обозначены интервалы 1σ и 2σ (68.3% и 95.4%). Для сравнения показаны интервалы 1σ и 2σ для предыдущих оценок: Планк (зеленый) и SHoES (оранжевый), которые не сходятся друг с другом.

Гравитационные волны в данном случае играют роль стандартных свечей (и называются стандартными сиренами). Наблюдая амплитуду сигнала на Земле и моделируя его амплитуду в источнике, можно оценить, насколько она уменьшилась, и узнать тем самым расстояние до источника - независимо от любых предположений на постоянную Хаббла или предыдущие измерения. Наблюдение светового сигнала позволило определить галактику, где располагалась пара нейтронных звезд, а скорость удаления этой галактики была хорошо известна по предыдущим измерениям. Отношение между скоростью и расстоянием и является постоянной Хаббла. Важно, что такая оценка совершенно независима от предыдущих оценок или космической шкалы расстояний.

Одного измерения оказалось недостаточно, чтобы разрешить загадку различия в оценках Планка и SHoES, но в целом оценка уже хорошо соответствует известным значениям. Учитывая, что предыдущие оценки основываются на статистике, собранной на протяжении многих лет, это очень значительный результат.

Немного о LIGO и глитчах



Верхняя панель показывает глитч в данных LIGO-Livingston, и также явно демонстрирует наличие чирпа. Нижняя панель показывает безразмерную амплитуду колебаний, ”strain" (величина, которой мы описываем величину сигнала в LIGO и Virgo) в момент глитча. Это короткий
(длится всего около 1/4 секунды), но очень сильный сигнал. Подавление уменьшает глитч до уровня оранжевой кривой, которая показывает уровень фонового шума, всегда присутствующего в детекторах LIGO.

Только один из детекторов LIGO увидел сигнал в автоматическом режиме, поскольку на детекторе в Ливингстоне в момент события произошел «глитч». Этим термином называют всплеск шума, похожий на хлопок статики в радиоприемнике. Хотя гравитационно волновой сигнал был очевидно заметен человеческому глазу, автоматика отсекает подобные данные. Поэтому понадобилась очистка сигнала от глитча, прежде чем данные могли быть использованы детектором. Глитчи появляются в детекторах все время - примерно раз в несколько часов. Ученые классифицируют их по форме и длительности и используют эти знания для улучшения детекторов. Вы можете помочь им в этом в проекте GravitySpy , где пользователи ищут и классифицируют глитчи в данных LIGO, чтобы помочь ученым.

Вопросы без ответов



Известные нам черные дыры, нейтронные звезды и их слияния. Есть область средних масс, о существовании компактных объектов с которыми мы ничего не знаем. Credit: LIGO-Virgo/Northwestern/Frank Elavsky

Мы зарегистрировали гравитационные волны от двух компактных объектов, и наблюдение электромагнитного излучения говорит о том, что один из них был нейтронной звездой. Но второй мог быть и черной дырой малой массы, и хотя ранее таких черных дыр никто не видел, теоретически они могут существовать. Из наблюдения GW170817 нельзя определить точно, было ли это столкновение двух нейтронных звезд, хотя это и более вероятно.

Второй любопытный момент: а чем стал этот объект после слияния? Он мог стать либо сверхмассивной нейтронной звездой (самой массивной из известных) или самой легкой из известных черных дыр. К сожалению, данных наблюдения недостаточно, чтобы ответить на этот вопрос.

Заключение

Наблюдение слияния нейтронных звезд в о всех диапазонах - потрясающе богатое на физику событие. Количество данных, полученных учеными только за эти два месяца позволило подготовить несколько десятков публикаций, и гораздо больше будет, когда данные станут общедоступными. Физика нейтронных звезд гораздо богаче и интереснее физики черных дыр - мы можем напрямую проверять физику сверхплотного состояния вещества, а также квантовую механику в условиях сильных гравитационных полей. Эта уникальная возможность может помочь нам наконец найти связь между общей теорией относительности и квантовой физикой, которая до сих пор ускользала от нас.

Это открытие еще раз показывает, насколько в современной физике важна совместная работа многих коллабораций из тысяч людей.

Reddit AMA

Традиционно на Reddit ученые из LIGO отвечают на вопросы пользователей, очень рекомендую!
Происходит это будет с 18 часов по Москве 17 и 18 октября. Ссылка на событие будет ко времени начала.
  • общая теория относительности
  • телескоп хаббл
  • телескоп планк
  • Добавить метки

    17 августа 2017 года лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO и франко-итальянский детектор гравитационных волн VIRGO впервые зафиксировали гравитационные волны от столкновения двух нейтронных звезд. Примерно через две секунды после этого космический гамма-телескоп NASA «Fermi» и астрофизическая гамма-лаборатория ESA «INTEGRAL» наблюдали короткий гамма-всплеск GRB170817A в той же области неба.

    «Ученому редко выпадает случай стать свидетелем начала новой эры в науке. Это – один из таких случаев!» – сказала Елена Пиан из Астрофизического института Италии, автор одной из публикуемых в Nature статей.

    Что такое гравитационные волны?

    Гравитационные волны, создающиеся движущимися массами, являются маркерами самых жестоких событий во Вселенной и возникают при столкновении плотных объектов, таких как черные дыры или нейтронные звезды.

    Их существование было предсказано еще в 1916 году Альбертом Эйнштейном в Общей Теории Относительности. Однако, зафиксировать гравитационные волны удалось только спустя сто лет, поскольку только самые мощные из этих волн, обусловленные быстрыми изменениями скорости очень массивных объектов, могут быть зарегистрированы современными приемниками.

    До сегодняшнего дня было поймано 4 сигнала гравитационных волн: трижды LIGO в одиночку фиксировал «рябь» пространства-времени, а 14 сентября 2017 года впервые гравитационные волны были пойманы сразу тремя детекторами (двумя детекторами LIGO в США и одним детектор VIRGO в Европе).

    У четырех предыдущих событий есть одно общее – все они вызваны слиянием пар черных дыр, вследствие чего увидеть их источник невозможно. Теперь все изменилось.

    Как обсерватории по всему миру «ловили» источник гравитационных волн

    Совместная работа LIGO и VIRGO позволила позиционировать источник гравитационных волн в пределах обширного участка южного неба размером в несколько сотен дисков полной Луны, содержащего миллионы звезд. Более 70 обсерваторий по всему миру, а также космический телескоп NASA «Hubble» принялись наблюдать этот район неба в поисках новых источников излучения.

    Первое сообщение об обнаружении нового источника света поступило спустя 11 часов с метрового телескопа «Swope». Оказалось, что объект находился очень близко к линзовидной галактике NGC 4993 в созвездии Гидры. Почти в то же время тот же источник был зарегистрирован телескопом Европейской южной обсерватории ESO «VISTA» в инфракрасных лучах. По мере того, как ночь продвигалась по земному шару на запад, объект наблюдался на Гавайских островах телескопами «Pan-STARRS» и «Subaru», причем была отмечена его быстрая эволюция.

    Вспышка от столкновения двух нейтронных звезд в галактике NGC 4993 хорошо видна на снимке космического телескопа «Hubble». Наблюдения, проведенные с 22 по 28 августа 2017 года, показывают, как она постепенно исчезала. Credit: NASA/ESA

    Оценки расстояния до объекта, полученные как из гравитационно-волновых данных, так и из других наблюдений, дали согласующиеся результаты: GW170817 находится на том же расстоянии от Земли, что и галактика NGC 4993, то есть в 130 миллионах световых лет. Таким образом, это ближайший к нам из всех обнаруженных источников гравитационных волн и один из ближайших когда-либо наблюдавшихся источников гамма-всплесков.

    Загадочная килоновая

    После того, как массивная звезда взрывается в виде сверхновой, на ее месте остается сверхплотное сколлапсировавшее ядро: нейтронная звезда. Слияниями нейтронных звезд в основном объясняются и короткие гамма-всплески. Считается, что это событие сопровождается взрывом в тысячу раз более ярким, чем типичная новая – так называемой килоновой.

    Художественное представление столкновения двух нейтронных звезд в галактике NGC 4993, породившего вспышку килоновой и гравитационные волны. Credit: ESO/L. Calgada/M. Kornmesser

    «Это ни на что не похоже! Объект очень быстро стал невероятно ярким, а затем начал стремительно исчезать, переходя от синего цвета к красному. Это невероятно!» – рассказывает Райан Фоули из Калифорнийского университета в Санта-Крузе (США).

    Почти одновременная регистрация гравитационных волн и гамма-лучей от GW170817 породила надежду на то, что это и есть давно разыскиваемая килоновая. Подробные наблюдения на инструментах ESO и космическом телескопе «Hubble» действительно обнаружили у этого объекта свойства очень близкие к теоретическим предсказаниям, сделанным более 30 лет назад. Таким образом, получено первое наблюдательное подтверждение существования килоновых.

    Пока неясно, какой объект породило слияние двух нейтронных звезд: черную дыру или новую нейтронную звезду. Дальнейший анализ данных должен ответить на этот вопрос.

    В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к очень красному.

    «Данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO и VIRGO, и замечательное достижение ESO, которой удалось получить наблюдения килоновой», – рассказывает Стефано Ковино из Астрофизического института Италии, автор одной из публикуемых в Nature Astronomy статей.

    Некоторые из элементов, выбрасываемые в космос при слиянии двух нейтронных звезд. Credit: ESO/L. Calçada/M. Kornmesser

    Спектры, полученные инструментами на Очень большом телескопе ESO показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд. Эти и другие тяжелые элементы рассеиваются в космосе после взрывов килоновых. Таким образом, наблюдения указывают на формирование элементов тяжелее железа при ядерных реакциях в недрах сверхплотных звездных объектов. Этот процесс, называемый r-нуклеосинтезом, раньше был известен только в теории.

    Важность открытия

    Открытие ознаменовало рассвет новой эры в космологии: теперь мы можем не только слушать, но и видеть события, порождающие гравитационные волны! В краткосрочной перспективе анализ новых данных позволит ученым получить более точное представление о нейтронных звездах, а в будущем наблюдения подобных событий помогут объяснить продолжающееся расширение Вселенной, состав темной энергии, а также происхождение самых тяжелых элементов в космосе.

    Исследования, описывающие открытие, представлены серией статей в журналах Nature , Nature Astronomy и Astrophysical Journal Letters .

    МОСКВА, 16 октября. /ТАСС/. Детекторы LIGO (Laser Interferometric Gravitational Wave Observatory, США) и Virgo (аналогичная обсерватория в Италии) впервые зарегистрировали гравитационные волны от слияния двух нейтронных звезд. Об этом открытии объявлено в понедельник во время международной пресс-конференции, прошедшей одновременно в Москве, Вашингтоне и ряде городов в других странах.

    "Ученые впервые зафиксировали гравитационные волны от слияния двух нейтронных звезд, причем это явление наблюдали не только на лазерных интерферометрах, регистрирующих гравитационные волны, но и с помощью космических обсерваторий (INTEGRAL, Fermi) и наземных телескопов, регистрирующих электромагнитное излучение. В сумме это явление наблюдали около 70 наземных и космических обсерваторий по всему миру, в числе которых сеть роботов-телескопов МАСТЕР (МГУ им. М.В. Ломоносова)", - говорится в сообщении пресс-службы МГУ.

    Когда и как зарегистрировали

    Открытие, о котором ученые сообщили в понедельник, было сделано еще 17 августа. Тогда оба детектора LIGO зарегистрировали гравитационный сигнал, получивший название GW170817. Информация, предоставленная третьим детектором Virgo, позволила значительно улучшить локализацию космического события.

    Почти в то же время, примерно через две секунды после гравитационных волн, космический гамма-телескоп NASA Fermi и Международная орбитальная обсерватория гамма лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) обнаружили всплески гамма-лучей. В последующие дни ученые зарегистрировали электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

    Сигналы детекторов LIGO показали, что зарегистрированные гравитационные волны излучались двумя астрофизическими объектами, вращающимися друг относительно друга и расположенными на относительно близком расстоянии - около 130 млн световых лет - от Земли. Оказалось, что объекты были менее массивными, чем ранее обнаруженные LIGO и Virgo двойные черные дыры. Согласно вычислениям, их массы находились в диапазоне от 1,1 до 1,6 массы Солнца, что попадает в область масс нейтронных звезд, самых маленьких и самых плотных среди звезд. Их типичный радиус составляет всего 10-20 км.

    Если сигнал от сливающихся двойных черных дыр обычно находился в диапазоне чувствительности детекторов LIGO в течение долей секунды, то сигнал, зарегистрированный 17 августа, длился около 100 секунд. Спустя примерно две секунды после слияния звезд произошла вспышка гамма-излучения, которая была зарегистрирована космическими гамма-телескопами.

    Быстрое обнаружение гравитационных волн командой LIGO-Virgo в сочетании с обнаружением гамма-излучения позволило запустить наблюдение оптическими и радиотелескопами по всему миру.

    Получив координаты, несколько обсерваторий уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие. Новая светлая точка, напоминающая новую звезду, была обнаружена оптическими телескопами, и в итоге около 70 обсерваторий на земле и в космосе наблюдали это событие в различных диапазонах длин волн.

    В последующие дни после столкновения было зарегистрировано электромагнитное излучение в рентгеновском, ультрафиолетовом, оптическом, инфракрасном и радиоволновом диапазонах.

    "Впервые, в отличие от "одиноких" слияний черных дыр, зарегистрировано "компанейское" событие не только гравитационными детекторами, но еще и оптическими и нейтринными телескопами. Это первый такой хоровод наблюдений вокруг одного события", - рассказал профессор физического факультета МГУ Сергей Вятчанин, который входит в группу российских ученых, участвовавших в наблюдении за явлением, под руководством профессора физического факультета МГУ Валерия Митрофанова.

    Теоретики предсказывают, что при столкновении нейтронных звезд должны излучаться гравитационные волны и гамма-лучи, а также извергаться мощные струи вещества, сопровождающиеся излучением электромагнитных волн в широком частотном диапазоне.

    Обнаруженный гамма-всплеск является так называемым коротким гамма-всплеском. Ранее ученые лишь предсказывали, что короткие гамма-всплески генерируются при слиянии нейтронных звезд, а теперь это подтверждено наблюдениями. Но, несмотря на то, что источник обнаруженного короткого гамма-всплеска был одним из самых близких к Земле, видимых до сих пор, сам всплеск был неожиданно слаб для такого расстояния. Теперь ученым предстоит найти объяснение этому факту.

    Со скоростью света

    В момент столкновения основная часть двух нейтронных звезд слилась в один ультраплотный объект, испускающий гамма-лучи. Первые измерения гамма-излучения в сочетании с детектированием гравитационных волн подтверждают предсказание общей теории относительности Эйнштейна, а именно, что гравитационные волны распространяются со скоростью света.

    "YouTube/Georgia Tech"

    "Во всех предыдущих случаях источником гравитационных волн были сливающиеся черные дыры. Как это ни парадоксально, черные дыры - это очень простые объекты, состоящие исключительно из искривленного пространства и поэтому полностью описывающиеся хорошо известными законами общей теории относительности. В то же время, структура нейтронных звезд и, в частности, уравнение состояния нейтронной материи до сих пор точно неизвестны. Поэтому изучение сигналов от сливающихся нейтронных звезд позволит получить огромное количество новой информации также и о свойствах сверхплотной материи в экстремальных условиях", - сказал профессор физического факультета МГУ Фарит Халили, который так же входит в группу Митрофанова.

    Фабрика тяжелых элементов

    Теоретики предсказали, что в результате слияния образуется "килоновая". Это явление, при котором остающийся от столкновения нейтронных звезд материал ярко светится и выбрасывается из области столкновения далеко в космос. При этом возникают процессы, в результате которых создаются тяжелые элементы, такие как свинец и золото. Наблюдение после свечения слияния нейтронных звезд позволяют получать дополнительную информацию о различных стадиях этого слияния, о взаимодействии образовавшегося объекта с окружающей средой и о процессах, которые производят самые тяжелые элементы во Вселенной.

    "В процессе слияния зафиксировано образование тяжелых элементов. Поэтому можно говорить даже о галактической фабрике по производству тяжелых элементов, в том числе золота - ведь именно этот металл больше всего интересует землян. Ученые начинают предлагать модели, которые объяснили бы наблюдаемые параметры этого слияния", - отметил Вятчанин.

    О коллаборации LIGO-LSC

    Научная коллаборация LIGO-LSC (LIGO Scientific Collaboration) объединяет более 1200 ученых из 100 институтов различных стран. Обсерватория LIGO построена и эксплуатируется Калифорнийским и Массачусетским технологическими институтами. Партнером LIGO является коллаборация Virgo, в которой работают 280 европейских ученых и инженеров из 20 исследовательских групп. Детектор Virgo находится недалеко от Пизы (Италия).

    В исследованиях LIGO Scientific Collaboration принимают участие два научных коллектива из России: группа физического факультета Московского государственного университета имени М.В. Ломоносова и группа Института прикладной физики РАН (Нижний Новгород). Исследования поддерживаются Российским фондом фундаментальных исследований и Российским научным фондом.

    Детекторы LIGO в 2015 году впервые зарегистрировали гравитационные волны от столкновения черных дыр, а в феврале 2016 года об открытии было объявлено на пресс-конференции. В 2017 году лауреатами Нобелевской премии по физике стали американские физики Райнер Вайсс, Кип Торн и Берри Бэриш за решающий вклад в проект LIGO, а также "наблюдение за гравитационными волнами".

    Вчера на пресс-конференции в Вашингтоне учёные официально объявили о регистрации астрономического события, которое никто не регистрировал раньше - слияния двух нейтронных звёзд. По результатам наблюдения было опубликовано более 30 научных статей в пяти журналах, поэтому рассказать сразу обо всём мы не можем. Вот краткое изложение и самые главные открытия.
    Астрономы наблюдали слияние двух нейтронных звёзд и рождение новой чёрной дыры. Нейтронные звёзды - объекты, которые появляются в результате взрывов больших и массивных (в несколько раз тяжелее Солнца) звёзд. Их размеры невелики (в диаметре они обычно не больше 20 километров), зато плотность и масса огромны. В результате слияния двух нейтронных звёзд в 130 миллионах световых лет от Земли образовалась черная дыра - объект еще более массивный и плотный, чем нейтронная звезда. Слияние звёзд и образование чёрной дыры сопровождалось выделением огромной энергии в форме гравитационного, гамма- и оптического излучения. Все три вида излучения зафиксировали земные и орбитальные телескопы. Гравитационную волну зарегистрировали обсерватории LIGO и VIRGO.
    Эта гравитационная волна была самой высокоэнергетической из всех, наблюдавшихся до сих пор. Все виды излучения дошли до Земли 17 августа. Сначала наземные лазерные интерферометры LIGO и Virgo зарегистрировали периодическое сжатие и расширение пространства-времени - гравитационную волну, несколько раз обогнувшую земной шар. Событие, породившее гравиволну, получило название GRB170817A. Через несколько секунд гамма-телескоп NASA «Ферми» зарегистрировал фотоны высокой энергии в гамма-диапазоне. А дальше началось нечто: получив предупреждение коллаборации LIGO/Virgo, астрономы по всей Земле настроили свои телескопы на координаты источника излучения. В этот день в одну точку пространства смотрели большие и маленькие, наземные и орбитальные телескопы, работающие во всех диапазонах. По результатам наблюдений в Калифорнийском университете (Беркли) сделали компьютерную симуляцию слияния нейтронных звёзд. Обе звезды были, по всей видимости, массой немногим больше Солнца (но при этом гораздо меньшего радиуса). Эти два шара невероятной плотности кружились друг вокруг друга, постоянно ускоряясь. Вот как это было: В результате слияния нейтронных звёзд в космическое пространство попали атомы тяжёлых элементов - золота, урана, платины; астрономы полагают, что такие события - это главный источник этих элементов во Вселенной. Оптические телескопы сначала «увидели» синий видимый свет, а затем ультрафиолетовое излучение, которое сменилось красным светом и излучением в инфракрасном диапазоне.
    Эта последовательность совпадает с теоретическими предсказаниями. Согласно теории, сталкиваясь, нейтронные звёзды теряют часть вещества - оно распыляется вокруг места столкновения огромным облаком нейтронов и протонов. Когда начинает формироваться черная дыра, вокруг нее образуется аккреционный диск, в котором частицы вращаются с огромной скоростью - настолько огромной, что некоторые преодолевают притяжение чёрной дыры и разлетаются прочь. Такая судьба ожидает примерно 2% вещества столкнувшихся звёзд. Это вещество образует вокруг чёрной дыры облако диаметром в десятки тысяч километров и плотностью, примерно равной плотности Солнца. Протоны и нейтроны, из которых состояит это облако, слипаются, образуя атомные ядра. Затем начинается распад этих ядер. Излучение распадающихся ядер земные астрономы наблюдали в течение нескольких дней. За миллионы лет, прошедшие со времени события GRB170817A, это излучение наполнило всю галактику.