Что такое искусственный интеллект? История развития и перспективы. Основные направления исследований

В течение тысяч лет человек пытается понять, как он думает. В области искусственного интеллекта (ИИ) решается еще более ответственная задача: специалисты в этой области пытаются не только понять природу интеллекта, но и создать интеллектуальные сущности.

Искусственный интеллект - это одна из новейших областей науки. Первые работы в этой области начались вскоре после Второй мировой войны, а само ее название было предложено в 1956 году. Ученые других специальностей чаще всего указывают искусственный интеллект, наряду с молекулярной биологией, как «область, в которой я больше всего хотел бы работать». Студенты-физики вполне обоснованно считают, что все великие открытия в их области уже были сделаны Галилеем, Ньютоном, Эйнштейном и другими учеными. Искусственный интеллект, с другой стороны, все еще открывает возможности для проявления талантов нескольких настоящих Эйнштейнов.

В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

Общее определение искусственного интеллекта

Из сказанного выше можно сделать вывод, что искусственный интеллект представляет собой чрезвычайно интересную научную область. Но определение этого научного направления в настоящей книге еще не было дано. В таблице приведены определения искусственного интеллекта, взятые из восьми научных работ.

Эти определения можно классифицировать по двум основным категориям. Грубо говоря, формулировки, приведенные в верхней части таблицы, касаются мыслительных процессов и способов рассуждения, а в нижней части таблицы находятся формулировки, касающиеся поведения.

В определениях, приведенных слева, успех измеряется в терминах достоверного воспроизведения способностей человека, а формулировки, находящиеся справа, характеризуют конечные достижения в той области трактовки идеальной концепции интеллектуальности, которую предпочитают называть рациональностью. Система является рациональной, если она «все действия выполняет правильно», при условии, что система обладает знаниями о том, что является правильным.

Системы, которые думают подобно людям Системы, которые думают рационально
Новое захватывающее направление работ по созданию компьютеров, способных думать, ...машин, обладающих разумом, в полном и буквальном смысле этого слова Изучение умственных способностей с помощью вычислительных моделей
Автоматизация действий, которые мы ассоциируем с человеческим мышлением, т.е. таких действий, как принятие решений, решение задач, обучение Изучение таких вычислений, которые позволяют чувствовать, рассуждать и действовать
Искусство создания машин, которые выполняют функции, требующие интеллектуальности при их выполнении людьми Вычислительный интеллект- это наука о проектировании интеллектуальных агентов
Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят Искусственный интеллект - это наука, посвященная изучению интеллектуального поведения артефактов

История развития искусственного интеллекта показывает, что интенсивные исследования проводились по всем четырем направлениям. Вполне можно предположить, что между теми учеными, которые в основном исходят из способностей людей, и теми, кто занимается главным образом решением проблемы рациональности, существуют определенные разногласия.

Подход, ориентированный на изучение человека, должен представлять собой эмпирическую научную область, развитие которой происходит по принципу выдвижения гипотез и их экспериментального подтверждения. С другой стороны, подход, основанный на понятии рациональности, представляет собой сочетание математики и техники. Каждые из этих групп ученых действуют разрозненно, но вместе с тем помогают друг другу. Ниже четыре указанных подхода рассматриваются более подробно.

Проверка того, способен ли компьютер действовать подобно человеку: подход, основанный на использовании теста Тьюринга

Тест Тьюринга, предложенный Аланом Тьюрингом, был разработан в качестве удовлетворительного функционального определения интеллекта. Тьюринг решил, что нет смысла разрабатывать обширный список требований, необходимых для создания искусственного интеллекта, который к тому же может оказаться противоречивым, и предложил тест, основанный на том, что поведение объекта, обладающего искусственным интеллектом, в конечном итоге нельзя будет отличить от поведения таких бесспорно интеллектуальных сущностей, как человеческие существа.

Компьютер успешно пройдет этот тест, если человек-экспериментатор, задавший ему в письменном виде определенные вопросы, не сможет определить, получены ли письменные ответы от другого человека или от некоторого устройства.

Отметим, что решение задачи по составлению программы для компьютера для того, чтобы он прошел этот тест, требует большого объема работы. Запрограммированный таким образом компьютер должен обладать перечисленными ниже возможностями.

  • Средства обработки текстов на естественных языках (Natural Language Processing-NLP), позволяющие успешно общаться с компьютером, скажем на английском языке.
  • Средства представления знаний , с помощью которых компьютер может записать в память то, что он узнает или прочитает.
  • Средства автоматического формирования логических выводов , обеспечивающие возможность использовать хранимую информацию для поиска ответов на вопросы и вывода новых заключений.
  • Средства машинного обучения , которые позволяют приспосабливаться к новым обстоятельствам, а также обнаруживать и экстраполировать признаки стандартных ситуаций.

В тесте Тьюринга сознательно исключено непосредственное физическое взаимодействие экспериментатора и компьютера, поскольку для создания искусственного интеллекта не требуется физическая имитация человека. Но в так называемом полном тесте Тьюринга предусмотрено использование видеосигнала для того, чтобы экспериментатор мог проверить способности испытуемого объекта к восприятию, а также имел возможность представить физические объекты «в неполном виде» (пропустить их «через штриховку»).

Чтобы пройти полный тест Тьюринга, компьютер должен обладать перечисленными ниже способностями.

  • Машинное зрение для восприятия объектов.
  • Средства робототехники для манипулирования объектами и перемещения в пространстве.

Шесть направлений исследований, перечисленных выше, составляют основную часть искусственного интеллекта, а Тьюринг заслуживает нашей благодарности за то, что предложил такой тест, который не потерял своей значимости и через 50 лет. Тем не менее исследователи искусственного интеллекта практически не занимаются решением задачи прохождения теста Тьюринга, считая, что гораздо важнее изучить основополагающие принципы интеллекта, чем продублировать одного из носителей естественного интеллекта.

В частности, проблему «искусственного полета удалось успешно решить лишь после того, как братья Райт и другие исследователи перестали имитировать птиц и приступили к изучению аэродинамики. В научных и технических работах по воздухоплаванию цель этой области знаний не определяется как «создание машин, которые в своем полете настолько напоминают голубей, что даже могут обмануть настоящих птиц».

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Национальная стратегия развития искусственного интеллекта

  • Основная статья: Национальная стратегия развития искусственного интеллекта

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2019: Эксперты ISO/IEC поддержали предложение о разработке стандарта на русском языке

16 апреля 2019 года стало известно, что подкомитет ISO /IEC по стандартизации в области искусственного интеллекта поддержал предложение Технического комитета «Кибер-физические системы », созданного на базе РВК , о разработке стандарта «Artificial intelligence. Concepts and terminology» на русском языке в дополнение к базовой английской версии.

Терминологический стандарт «Artificial intelligence. Concepts and terminology» является основополагающим для всего семейства международных нормативно-технических документов в области искусственного интеллекта. Кроме терминов и определений, данный документ содержит концептуальные подходы и принципы построения систем с элементами , описание взаимосвязи AI с другими сквозными технологиями, а также базовые принципы и рамочные подходы к нормативно-техническому регулированию искусственного интеллекта.

По итогам заседания профильного подкомитета ISO/IEC в Дублине эксперты ISO/IEC поддержали предложение делегации из России о синхронной разработке терминологического стандарта в сфере AI не только на английском, но и на русском языке. Ожидается, что документ будет утвержден в начале 2021 года.

Развитие продуктов и услуг на базе искусственного интеллекта требует однозначной трактовки используемых понятий всеми участниками рынка. Стандарт терминологии позволит унифицировать «язык», на котором общаются разработчики, заказчики и профессиональное сообщество, классифицировать такие свойства продуктов на базе ИИ, как «безопасность», «воспроизводимость», «достоверность» и «конфиденциальность». Единая терминология также станет важным фактором для развития технологий искусственного интеллекта в рамках Национальной технологической инициативы – алгоритмы ИИ используют более 80% компаний в периметре НТИ. Кроме того, решение ISO/IEC позволит укрепить авторитет и расширить влияние российских экспертов при дальнейшей разработке международных стандартов.

В ходе заседания эксперты ISO/IEC также поддержали разработку проекта международного документа Information Technology - Artificial Intelligence (AI) - Overview of Computational Approaches for AI Systems, в котором Россия выступает в качестве соредактора. Документ предоставляет обзор современного состояния систем искусственного интеллекта, описывая основные характеристики систем, алгоритмы и подходы, а также примеры специализированных приложений в области AI. Разработкой этого проекта документа займется специально созданная в рамках подкомитета рабочая группа 5 «Вычислительные подходы и вычислительные характеристики систем Искусственного интеллекта» (SC 42 Working Group 5 «Computational approaches and computational characteristics of AI systems»).

В рамках работы на международном уровне делегации из России удалось добиться ряда знаковых решений, которые будут иметь долгосрочный эффект для развития в стране технологий искусственного интеллекта. Разработка русскоязычной версии стандарта, еще и со столь ранней фазы – гарантия синхронизации с международным полем, а развитие подкомитета ISO/IEC и инициация международных документов с российским соредакторством – это фундамент для дальнейшего продвижения интересов российских разработчиков за рубежом», - прокомментировал.

Технологии искусственного интеллекта широко востребованы в самых разных отраслях цифровой экономики . Среди основных факторов, сдерживающих их полномасштабное практическое использование, - неразвитость нормативной базы. При этом именно проработанная нормативно-техническая база обеспечивает заданное качество применения технологии и соответствующий экономический эффект.

По направлению искусственный интеллект ТК «Кибер-физические системы» на базе РВК ведет разработку ряда национальных стандартов, утверждение которых запланировано на конец 2019 – начало 2020 года. Кроме того, совместно с рыночными игроками идет работа по формированию Плана национальной стандартизации (ПНС) на 2020 год и далее. ТК «Кибер-физические системы» открыт для предложений по разработке документов со стороны заинтересованных организаций.

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в борьбе с мошенничеством

11 июля 2019 года стало известно о том, что всего через два года искусственный интеллект и машинное обучение будут использоваться для противодействия мошенничеству в три раза чаще, чем на июль 2019 года. Такие данные были получены в ходе совместного исследования компании SAS и Ассоциации сертифицированных специалистов по расследованию хищений и мошенничества (Association of Certified Fraud Examiners, ACFE). На июль 2019 года такие антифрод -инструменты уже используют в 13% организаций, принявших участие в опросе, и в еще 25% заявили, что планируют их внедрить в течение ближайшего года-двух. Подробнее .

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что

Музыка

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Чарльз Бэббидж (1791-1871)

Принцип действия современных вычислительных машин был заложен еще в середине 19 столетия английским математиком Чарльзом Бэббиджем. Это был выдающийся учёный, разносторонне развитый человек, автор множества изобретений, таких как спидометр, сейсмограф, офтальмоскоп. Но в истории он остался прежде всего как изобретатель первой аналитической вычислительной машины - прообраза современной ЭВМ.

Впервые идея создать машину, которая могла бы помочь в вычислениях, возникла у ученого в 1812 году. Исправляя бесчисленные ошибки в логарифмических таблицах, Бэббидж задумался, как облегчить этот труд. Ученый вспомнил, что во Франции применяли новый метод ведения математических расчетов. Сложную задачу разбивали на ряд простых операций и поручали решать их трём группам математиков. Первая группа составляла схемы расчетов, вторая находила численные значения функций, третья производила примитивное сложение и вычитание. Причем в последней группе были люди, ничего не знавшие о математике, кроме этих простых операций.

«А ведь это можно сделать на машине! - подумал Бэббидж. - Достаточно простого выполнения команд математика, работа ведь механическая». Так начался путь, который в 20 веке назвали дорогой волшебства и технологий.

Семь лет ушло у Бэббиджа на продумывание и формулировку принципов вычисления при помощи машины. Еще три года он конструировал свой первый вычислительный механизм, который назвал разностной машиной. В 1822 году Чарльз Бэббидж выступил с докладом перед Королевским Астрономическим обществом и продемонстрировал работу своей малой разностной машины. Это был механизм, состоящий из множества рычагов и шестерёнок.


Часть разностной машины Чарльза Бэббиджа,
собранная его сыном после смерти ученого

За свое изобретение Бэббидж получил золотую медаль Астрономического общества.

При том уровне техники на создание двух первых вычислительных машин ушло 23 года, а Бэббидж истратил на это 17 тысяч фунтов стерлингов, выданных ему правительством, и всё личное состояние. Но денег всё же не хватило, да и уровень техники того времени не позволял создать большую разностную машину.


Большая разностная машина Чарльза Бэббиджа,
построенная в наше время по чертежам изобретателя в честь 200-летия со дня его рождения.
Машина полностью работоспособна.
Музей науки, Лондон

В 1835 году Бэббидж задумал новую машину. Она должна была выполнять арифметические действия, запоминать начальные данные, промежуточные результаты и результаты вычислений, решать задачи по заданным инструкциям и командам, выдавать результаты вычислений и последовательно выполнять команды, заданные для программы вычислений. Главное, она должна была выполнять все действия без вмешательства человека и, в зависимости от полученного на определенном этапе результата, сама выбирать дальнейший путь вычислений. Бэббидж назвал этот аппарат аналитической машиной. Это была попытка создать искусственный интеллект чисто механическим способом в век пара, когда электротехника только зарождалась.

Бэббидж умер, так и не увидев воплощения своего детища. В 1888 году сын Чарльза Бэббиджа Генри смог построить по чертежам отца центральный узел аналитической машины. Это устройство вычислило все произведения числа "пи" на числа натурального ряда от одного до 32 с точностью до 29 знаков! Таким образом была продемонстрирована полная работоспособность машины Бэббиджа.


Часть разностной машины Чарльза Бэббиджа крупным планом
Видны секторы, состоящие из колесиков и шестерёнок, разделенные колонками
Музей науки, Лондон

Чарльз Бэббидж предвосхитил многие идеи в создании логических схем и конструировании ЭВМ. Архитектура современных компьютеров построена по принципам, которые Бэббидж разработал для своей аналитической машины. Его схема включает три основные части машины: склад, в котором хранятся значения переменных при проведении математических операций (прообраз памяти), мельница, которая производит вычисления (в современных компьютерах эту функцию выполняет процессор), управляющий элемент (в чертежах Бэббиджа нет точного названия этого элемента) и устройства ввода-вывода информации (на перфокартах).

Таким образом, гений Бэббиджа позволил в 1834 году создать принцип компьютера 20 века.

Искусственный интеллект – в последнее время одна из наиболее популярных тем в технологическом мире. Такие умы, как Элон Маск, Стивен Хокинг и Стив Возняк всерьез обеспокоены исследованиями в области ИИ и утверждают, что его создание грозит нам смертельной опасностью. В то же время научная фантастика и голливудские фильмы породили множество заблуждений вокруг ИИ. Так ли нам угрожает опасность и какие неточности мы допускаем, представляя уничтожение Земли Skynet, всеобщую безработицу или наоборот достаток и беззаботность? В человеческих мифах об искусственном интеллекте разобралось издание Gizmodo. Приводим полный перевод его статьи.

Это называли важнейшим тестом машинного разума со времен победы Deep Blue над Гарри Каспаровым в шахматном поединке 20-летней давности. Google AlphaGo победил на турнире по Го гроссмейстера Ли Седоля с разгромным счетом 4:1, показав насколько серьезно искусственный интеллект (ИИ) продвинулся вперед. Судьбоносный день, когда машины наконец превзойдут в уме человека, никогда не казался так близко. Но мы, кажется, так и не приблизились к осознанию последствий этого эпохального события.

В действительности, мы цепляемся за серьезные и даже опасные заблуждения об искусственном интеллекте. В прошлом году основатель SpaceX Элон Маск предостерег, что ИИ может захватить мир. Его слова вызвали бурю комментариев, как противников, так и сторонников этого мнения. Как для такого будущего монументального события, есть поразительное количество разногласий относительно того, произойдет ли оно, и, если да, то в какой форме. Это особенно тревожно, если принять во внимание невероятную пользу, которую может получить человечество от ИИ, и возможные риски. В отличие от других изобретений человека, у ИИ есть потенциал изменить человечество или уничтожить нас.

Трудно понять, чему верить. Но благодаря первым работам ученых в области вычислительных наук, нейробиологов, теоретиков в области ИИ, начинает возникать более четкая картина. Вот несколько общих заблуждений и мифов касательно искусственного интеллекта.

Миф №1: “Мы никогда не создадим ИИ с разумом сравнимым с человеческим”

Реальность: У нас уже есть компьютеры, которые сравнялись или превысили человеческие возможности в шахматах, Го, торговле на бирже и разговорах. Компьютеры и алгоритмы, которые ими руководят, могут становиться только лучше. Это лишь вопрос времени, когда они превзойдут человека в любой задаче.

Психолог-исследователь из университета Нью-Йорка Гари Маркус сказал, что “буквально каждый”, кто работает в ИИ, верит, что машины, в конце концов, обойдут нас: “Единственное реальное отличие между энтузиастами и скептиками – это оценки сроков”. Футуристы вроде Рея Курцвейла считают, что это может произойти в течение нескольких десятилетий, другие говорят, что потребуются века.

ИИ-скептики не убедительны, когда говорят, что это нерешаемая технологическая проблема, а в природе биологического мозга есть что-то уникальное. Наши мозги – биологические машины – они существуют в реальном мире и придерживаются основных законов физики. В них нет ничего непознаваемого.

Миф №2: “Искусственный интеллект будет иметь сознание”

Реальность: Большинство представляет, что машинный разум будет обладать сознанием и думать так, как думают люди. Более того, критики вроде сооснователя Microsoft Пола Аллена верят, что мы пока не можем достигнуть общего искусственного интеллекта (способен решить любую умственную задачу, с которой справляется человек), потому что нам не хватает научной теории сознания. Но как говорит специалист по когнитивной робототехнике Имперского колледжа Лондона Мюррей Шанахан, нам нельзя приравнивать эти две концепции.

“Сознание безусловно удивительная и важная вещь, но я не верю, что оно необходимо для искусственного интеллекта человеческого уровня. Если выражаться более точно, мы используем слово “сознание” для обозначения нескольких психологических и когнитивных признаков, которые у человека “идут в комплекте”, – объясняет ученый.

Умную машину, которой не хватает одного или нескольких подобных признаков, можно представить. В конце концов, мы можем создать невероятной умный ИИ, который будет неспособен воспринимать мир субъективно и осознано. Шанахан утверждает, что разум и сознание можно совместить в машине, но мы не должны забывать, что это две разных концепции.

То, что машина проходит тест Тьюринга, в котором она неотличима от человека, не означает наличие у нее сознания. Для нас передовой ИИ может казаться осознанным, но его самосознание будет не большим, чем у камня или калькулятора.

Миф №3: “Нам не стоит бояться ИИ”

Реальность: В январе основатель Facebook Марк Цукерберг заявил, что нам не стоит бояться ИИ, ведь он сделает невероятное количество хороших вещей для мира. Он прав наполовину. Мы извлечем огромную выгоду от ИИ: от беспилотных автомобилей до создания новых лекарств, но нет никаких гарантий, что каждая конкретизации ИИ будет доброкачественной.

Высокоразумная система может знать все о конкретной задаче, вроде решения неприятной финансовой проблемы или взлома системы вражеской обороны. Но вне границ этих специализаций, она будет глубоко невежественна и не сознательна. Система Google DeepMind эксперт в Го, но у нее нет возможностей или причин исследовать сферы вне своей специализации.

Многие из этих систем могут не подчинятся соображениям безопасности. Хороший пример – сложный и мощный вирус Stuxnet, военизированный червь, разработанный военными Израиля и США для проникновения и диверсии работы иранских атомных станций. Это вирус каким-то образом (специально или случайно) заразил российскую атомную станцию.

Еще один пример, программа Flame, использованная для кибершпионажа на Ближнем Востоке. Легко представить будущие версии Stuxnet или Flame, который выходят за пределы своих целей и наносят огромный вред чувствительной инфраструктуре. (Для понимания, эти вирусы не являются ИИ, но в будущем они могут его иметь, откуда и беспокойство).

Вирус Flame использовался для кибершпионажа на Ближнем Востоке. Фото: Wired

Миф №4: “Искусственный суперинтеллект будет слишком умен, чтобы совершать ошибки”

Реальность: Исследователь ИИ и основатель Surfing Samurai Robots Ричард Лусимор считает, что большинство сценариев судного дня, связанного с ИИ, непоследовательны. Они всегда построены на предположении, что ИИ говорит: “Я знаю, что уничтожение человечества вызвано сбоем в моей конструкции, но я все равно вынужден это сделать”. Лусимор говорит, что если ИИ будет вести себя так, рассуждая о нашем уничтожении, то такие логические противоречия будут преследовать его всю жизнь. Это, в свою очередь, ухудшает его базу знаний и делает его слишком глупым для создания опасной ситуации. Ученый также утверждает, что люди, говорящие: “ИИ может делать только то, на что его запрограммировали”, заблуждаются также, как и их коллеги на заре компьютерной эры. Тогда люди использовали эту фразу утверждая, что компьютеры не способны продемонстрировать ни малейшей гибкости.

Питер Макинтайр и Стюарт Армстронг, которые работают в Институте будущего человечества при Оксфордском университете, не соглашаются с Лусимором. Они утверждают, что ИИ в значительной мере связан тем, как его запрограммировали. Макинтайр и Армстронг верят, что ИИ не сможет совершать ошибок или быть слишком тупым, чтобы не знать, чего мы от него ожидаем.

“По определению, искусственный суперинтеллект (ИСИ) – субъект, с разумом значительно большим, чем обладает лучший человеческий мозг в любой области знаний. Он будет точно знать, что мы хотели, чтобы он сделал”, – утверждает Макинтайр. Оба ученых верят, что ИИ будет делать лишь то, на что запрограммирован. Но если он станет достаточно умен, он поймет, как это отличается от духа закона или намерений людей.

Макинтайр сравнил будущую ситуацию людей и ИИ с теперешним взаимодействием человека и мыши. Цель мыши – искать еду и убежище. Но она часто конфликтует с желанием человека, который хочет, чтобы его зверек бегал вокруг него свободно. “Мы достаточно умны, чтобы понимать некоторые цели мышей. Так что ИСИ будет также понимать наши желания, но быть к ним безразличным”, – говорит ученый.

Как показывает сюжет фильма Ex Machina человеку будет крайне сложно удерживать более умный ИИ

Миф №5: “Простая заплатка решит проблему контроля ИИ”

Реальность: Создав искусственный интеллект умнее человека, мы столкнемся с проблемой известной как “проблема контроля”. Футуристы и теоретики ИИ впадают в состояние полной растерянности, если их спросить, как мы будем содержать и ограничивать ИСИ, если такой появится. Или как убедиться, что он будет дружественно настроен в отношении людей. Недавно исследователи из Института технологий Джорджии наивно предположили, что ИИ может перенять человеческие ценности и социальные правила, читая простые истории. На деле, это будет куда более сложно.

“Предлагалось множество простых трюков, которые могут “решить” всю проблему контроля ИИ”, – говорит Армстронг. Примеры включали программирование ИСИ так, чтобы его целью было угождать людям, или, чтобы он просто функционировал как инструмент в руках человека. Еще вариант – интегрировать концепции любви или уважения в исходный код. Чтобы предотвратить ИИ от принятия упрощенного, однобокого взгляда на мир, предлагалось запрограммировать его ценить интеллектуальное, культурное и социальное разнообразие.

Но эти решения слишком просты, как попытка втиснуть всю сложность человеческих симпатий и антипатий в одно поверхностное определение. Попробуйте, к примеру, вывести четкое, логичное и выполнимое определение “уважения”. Это крайне сложно.

Машины в “Матрице” могли без проблем уничтожить человечество

Миф №6: “Искусственный интеллект нас уничтожит”

Реальность: Нет никакой гарантии, что ИИ нас уничтожит, или, что мы не сможем найти возможности контролировать его. Как сказал теоретик ИИ Элизер Юдковски: “ИИ ни любит, ни ненавидит вас, но вы сделаны из атомов, которые он может использовать для других целей”.

В своей книге “Искусственный интеллект. Этапы. Угрозы. Стратегии” оксфордский философ Ник Бостром написал, что настоящий искусственный суперинтеллект, после его появления, создаст риск больший, чем любые другие человеческие изобретения. Выдающиеся умы вроде Элона Маска, Билла Гейтса и Стивена Хокинга (последний предупредил, что ИИ может быть нашей “худшей ошибкой в истории”) также выразили обеспокоенность.

Макинтайр сказал, что в большинстве целей, которыми может руководствоваться ИСИ, есть веские причины избавиться от людей.

“ИИ может спрогнозировать, достаточно правильно, что мы не хотим, чтобы он максимизировал прибыль конкретной компании, чего бы это ни стоило клиентам, окружающей среде и животным. Поэтому у него есть сильный стимул, чтобы позаботится о том, что его не прервут, не помешают, выключат или не изменят его целей, поскольку из-за этого изначальные цели не будут выполнены”, – утверждает Макинтайр.

Если только цели ИСИ не будут точно отображать наши собственные, то у него будут достойные поводы не дать нам возможности остановить его. Учитывая, что уровень его интеллекта значительно превосходит наш, мы с этим ничего не сможем поделать.

Никто не знает, какую форму обретет ИИ и как он может угрожать человечеству. Как отметил Маск, искусственный интеллект может использоваться для контроля, регулирования и мониторинга другого ИИ. Или он может быть пропитан человеческими ценностями или преобладающим желанием быть дружественным к людям.

Миф №7: “Искусственный суперинтеллект будет дружелюбным”

Реальность: Философ Иммануил Кант верил, что разум сильно коррелирует с моральностью. Нейробиолог Давид Чалмерс в своем исследовании “Сингулярность: Философский анализ” взял известную идею Канта и применил ее к возникшему искусственному суперинтеллекту.

Если это верно… мы можем ожидать, что интеллектуальный взрыв приведет к взрыву моральности. Затем мы можем ожидать, что появившиеся ИСИ системы будут суперморальны также, как и суперинтеллектуальны, что позволит нам ожидать от них доброкачественности.

Но идея того, что развитый ИИ будет просветленным и добрым, по своей сути, не очень правдоподобна. Как отметил Армстронг, есть много умных военных преступников. Не похоже, что связь между разумом и моральностью существует среди людей, поэтому он поддает сомнению работу этого принципа среди других умных форм.

“Умные люди, ведущие себя аморально, могут вызывать боль гораздо больших масштабов, чем их более глупые коллеги. Разумность просто дает им возможность быть плохими с большим умом, она не превращает их в добряков”, – утверждает Армстронг.

Как объяснил Макинтайр, возможность субъекта достичь цели не относиться к тому, будет эти цель разумной для начала. “Нам очень сильно повезет, если наши ИИ будут уникально одаренными и уровень их моральности будет расти вместе с разумом. Надеяться на удачу – не лучший подход для того, что может определить наше будущее”, – говорит он.

Миф №8: “Риски ИИ и робототехники равнозначны”

Реальность: Это особенно частая ошибка, насаждаемая некритичными СМИ и голливудскими фильмами вроде “Терминатора”.

Если бы искусственный суперинтеллект вроде Skynet действительно захотел бы уничтожить человечество, он был не использовал андроидов с шестиствольными пулеметами. Гораздо эффективнее было бы наслать биологическую чуму или нанотехнологическую серую слизь. Или просто уничтожить атмосферу.

Искусственный интеллект потенциально опасен не тем, что он может повлиять на развитие роботетехники, а тем, как его появление повлияет на мир в принципе.

Миф №9: “Изображение ИИ в научной фантастике – точное отображение будущего”

Множество видов разумов. Изображение: Элизер Юдковски

Конечно, авторы и футуристы использовали научную фантастику, чтобы делать фантастические прогнозы, но горизонт событий, который устанавливает ИСИ, это совсем другая опера. Более того, нечеловеческая природа ИИ делает для нас невозможным знание, а значит и предсказание, его природы и формы.

Чтобы развлекать нас, глупых людишек, в научной фантастике большинство ИИ изображены похожими на нас. “Существует спектр всех возможных разумов. Даже среди людей, вы достаточно отличаетесь от своего соседа, но эта вариация ничто, в сравнении со всеми разумами, которые могут существовать”, – говорит Макинтайр.

Большинство научно-фантастических произведений, чтобы рассказать убедительную историю, не должны быть научно точны. Конфликт обычно разворачивается между близкими по силе героями. “Представьте, насколько бы скучной была история, где ИИ без сознания, радости или ненависти, покончил бы с человечеством без всякого сопротивления, чтобы добиться неинтересной цели”, – зевая, повествует Армстронг.

На заводе Tesla трудятся сотни роботов

Миф №10: “Это ужасно, что ИИ заберет всю нашу работу”

Реальность: Возможность ИИ автоматизировать многое, из того, что мы делаем, и его потенциал уничтожить человечество, две совсем разные вещи. Но согласно Мартину Форду, автору “На заре роботов: Технологии и угроза безработного будущего”, их часто рассматривают как целое. Хорошо думать об отдаленном будущем применения ИИ, но только если оно не отвлекает нас от проблем, с которыми нам придется столкнуться в ближайшие десятилетия. Главная среди них – массовая автоматизация.

Никто не ставит под сомнение, что искусственный интеллект заменит множество существующих профессий, от работника фабрики до высших эшелонов белых воротничков. Некоторые эксперты предсказывают, что половине всех рабочих мест США угрожает автоматизация в ближайшем будущем.

Но это не означает, что мы не сможем справиться с потрясением. Вообще, избавление от большей части нашей работы, как физической так и ментальной, – квази-утопическая цель нашего вида.

“В течении пары десятилетий ИИ уничтожит множество профессий, но это неплохо”, – говорит Миллер. Беспилотные автомобили заменят водителей грузовиков, что сократит стоимость доставки и, как следствие, сделает многие продукты дешевле. “Если вы водитель грузовика и зарабатываете этим на жизнь – вы потеряете, но все другие наоборот смогут покупать больше товаров на ту же зарплату. А деньги, которые они отложат, будут потрачены на другие товары и услуги, которые создадут новые рабочие места для людей”, – утверждает Миллер.

По всей вероятности, искусственный интеллект будет создавать новые возможности производства блага, освободив людей для занятия другими вещами. Успехи в развитии ИИ будут сопровождаться успехами в других областях, особенно в производстве. В будущем, нам станет легче, а не сложнее, удовлетворять наши основные потребности.